The Structures of Crystals Containing trans and cis Molecules of 2,5-Dimethyl-3-hexene-2,5-diol, $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$, at $-160^{\circ} \mathrm{C}$

By A. F. J. Ruysink and Aafje Vos
Laboratorium voor Structuurchemie, Rijksuniversiteit Groningen, Zernikelaan, Paddepoel, Groningen, The Netherlands

(Received 24 January 1974; accepted 19 April 1974)

Abstract

Crystals of $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ have been investigated by X-ray diffraction at $-160^{\circ} \mathrm{C}$. Crystals of trans- $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ have the composition $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$. The space group is Pbcn with $a=9.6861$ (3), $b=10.430$ (1), $c=$ $18 \cdot 298$ (2) $\AA, Z=8$. The structure consists of layers perpendicular to z in which the molecules are linked by hydrogen bonds, either directly or via a water molecule on a twofold axis along z. Crystals with space group $P \overline{1}$ with $a=8.377$ (2), $b=13.335$ (2), $c=6.436$ (1) $\AA, \alpha=102.06$ (2), $\beta=74.69$ (2), $\gamma=102.59$ (2) ${ }^{\circ}$, contain two molecules of the cis isomer at general positions in the unit cell, and one molecule which is predominantly trans $-\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. There are spirals of hydrogen bonds along z. The variations in the lengths of the $\mathrm{C}-\mathrm{C}$ bonds (standard deviation $0.002 \AA$) can be ascribed to differences in hybridization and repulsion effects. Due to the repulsion, the $\mathrm{C}-\mathrm{C}$ bonds in the cis molecules have a tendency to be longer than corresponding bonds in the trans molecules. The angles $\mathrm{C}=\mathrm{C}-\mathrm{C}$ are 124.9 and 127.4° in the trans and 132.1 and $132.5(2)^{\circ}$ in the cis molecules. No explanation has been found for the observed variation in the $\mathrm{C}-\mathrm{OH}$ bond lengths from 1.432 to $1-452$ (2) \AA. Difference maps shows peaks lying on the centres of the $\mathrm{C}=\mathrm{C}$ bonds and elongated along the normal to the plane of the central part of the molecule. No relation has been found between geometry and length of the hydrogen bonds.

Introduction

For a future accurate X-ray diffraction study of the electron density distribution in single, double and triple $\mathrm{C}-\mathrm{C}$ bonds in analogous molecules, we have chosen a series of compounds derived from 2,5-dimethyl-2,5hexanediol:

where p is a single, double or triple bond. First routine structure determinations at $-160^{\circ} \mathrm{C}$ have been carried out to check whether the compounds yield crystals which are suitable for further very accurate work. The preparation of the compounds and details of the experimental work have been described in a preliminary communication (Helmholdt, Ruysink, Reynaers \& Kemper, 1972). In the present paper results are given of the study of the compound with the double bond. Hereafter the molecules of the trans and cis isomers will be called II-trans and II-cis.

Crystal data and results of structure refinement

Crystals of trans- $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ have the composition $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$. The space group is Pbcn, with $a=$ $9.6861(3), b=10 \cdot 430(1), c=18.298$ (2) \AA. In addition to eight II-trans molecules lying on general positions, the unit cell contains four $\mathrm{H}_{2} \mathrm{O}$ molecules lying on twofold axes. The final cycles of least-squares refinement were based on 3923 independent reflexions selected from

5619 measured reflexions with $I>0$. The criteria used are $\left|F_{o}\right|>3 w^{-1 / 2}$ and $\left|F_{c}\right|>1 \cdot 0$; the weight w is given by

$$
w=\left[w_{c}^{-1}+0 \cdot 0002\left|F_{o}\right|^{2}\right]^{-1}
$$

where w_{c} is the weight based on counting statistics. For the reflexions considered in the refinement we obtained $R=\left[\Sigma\left|F_{o}-F_{c}\right|^{2} / \Sigma\left|F_{o}\right|^{2}\right]^{1 / 2}=0.087$ and $R_{w}=$ 0.068 . The final coordinates and thermal parameters of the carbon and oxygen atoms are listed in Tables 1 and 2. The coordinates and thermal parameters, B, of the hydrogen atoms are given in Table 3.

Table 1. II-trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$. Final coordinates of the carbon and oxygen atoms

For numbering of atoms see the skeleton below Table 8. Standard deviations are given in parentheses in units of the last decimal place.

	x	y	z
O(1)	$0 \cdot 67019$ (10)	$0 \cdot 35067$ (10)	$0 \cdot 68368$ (5)
C(2)	$0 \cdot 67916$ (14)	$0 \cdot 54029$ (15)	$0 \cdot 61254$ (8)
C(3)	$0 \cdot 61704$ (15)	$0 \cdot 32952$ (16)	0.55508 (8)
C(4)	$0 \cdot 60276$ (13)	$0 \cdot 41370$ (13)	$0 \cdot 62261$ (7)
C(5)	$0 \cdot 45485$ (13)	$0 \cdot 43958$ (13)	$0 \cdot 64472$ (7)
C(6)	$0 \cdot 34135$ (13)	$0 \cdot 39189$ (13)	$0 \cdot 61468$ (7)
C(7)	$0 \cdot 19604$ (13)	$0 \cdot 41703$ (13)	0.64151 (7)
C(8)	$0 \cdot 12151$ (15)	$0 \cdot 29027$ (15)	0.65578 (9)
C(9)	$0 \cdot 11735$ (14)	0.49723 (16)	$0 \cdot 58540$ (8)
O(10)	$0 \cdot 19793$ (9)	$0 \cdot 49161$ (10)	0.70747 (5)
$\mathrm{O}(11)$	$\frac{1}{2}$	$0 \cdot 16479$ (13)	${ }^{3}$

During the X-ray study crystals which were expected to consist of II-cis molecules appeared to contain approximately one II-trans molecule per two II-cis molecules. The crystalline compound studied will be re-

Table 2. II-trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$. Parameters $U\left(\AA^{2}\right)_{i j}$ of the temperature factor $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}\right)\right]$ Values are $\times 10^{4}$.

		U_{11}	U_{22}	U_{33}	$2 U_{12}$	$2 U_{23}$
$\mathrm{O}(1)$	$132(4)$	$174(4)$	$148(4)$	$9(7)$	$72(7)$	$-49(7)$
$\mathrm{C}(2)$	$154(6)$	$199(6)$	$261(7)$	$-46(10)$	$128(11)$	$21(11)$
$\mathrm{C}(3)$	$171(6)$	$263(7)$	$159(6)$	$93(11)$	$-54(11)$	$44(10)$
$\mathrm{C}(4)$	$117(5)$	$157(6)$	$118(5)$	$23(9)$	$41(9)$	$2(8)$
$\mathrm{C}(5)$	$115(5)$	$132(5)$	$132(5)$	$24(9)$	$10(9)$	$13(8)$
$\mathrm{C}(6)$	$127(5)$	$136(5)$	$124(5)$	$20(9)$	$-11(9)$	$6(8)$
$\mathrm{C}(7)$	$121(5)$	$151(5)$	$133(5)$	$18(9)$	$-34(9)$	$-29(8)$
$\mathrm{C}(8)$	$170(6)$	$200(7)$	$242(7)$	$-100(11)$	$-19(12)$	$37(11)$
$\mathrm{C}(9)$	$165(6)$	$285(8)$	$183(6)$	$111(12)$	$50(12)$	$-71(10)$
$\mathrm{O}(10)$	$148(4)$	$169(4)$	$142(4)$	$72(8)$	$-60(8)$	$3(7)$
$\mathrm{O}(11)$	$157(6)$	$120(6)$	$193(6)$	0	0	$-77(10)$

Table 3. II-trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$. Final coordinates and parameters $B\left(\AA^{2}\right)$ of the hydrogen atoms
The 'heavy' atom to which a hydrogen atom is linked is given in parentheses.

	x	y	z	B
$\mathrm{H}(\mathrm{O} 1)$	$0 \cdot 61027$	$0 \cdot 28372$	$0 \cdot 70232$	$3 \cdot 3$ (5)
H(C2-1)	0.78679	$0 \cdot 51902$	$0 \cdot 60302$	$2 \cdot 7$ (4)
H(C2-2)	$0 \cdot 66972$	$0 \cdot 59939$	$0 \cdot 66076$	$3 \cdot 1$ (5)
H(C2-3)	$0 \cdot 63877$	$0 \cdot 59063$	$0 \cdot 56558$	$3 \cdot 3$ (5)
H(C3-1)	$0 \cdot 56846$	$0 \cdot 23710$	0.56196	$2 \cdot 5$ (4)
H(C3-2)	0.57592	$0 \cdot 37559$	$0 \cdot 50689$	$2 \cdot 3$ (4)
H(C3-3)	0.72527	$0 \cdot 31153$	0.54527	$2 \cdot 3$ (4)
H (C5)	$0 \cdot 44914$	$0 \cdot 49901$	$0 \cdot 69231$	$1 \cdot 4$ (3)
H(C6)	$0 \cdot 34548$	$0 \cdot 32770$	0.56910	1.8 (4)
H (C8-1)	$0 \cdot 17534$	0.23386	0.69627	2.7 (4)
H (C8-2)	$0 \cdot 11469$	$0 \cdot 23402$	$0 \cdot 60634$	$1 \cdot 3$ (3)
$\mathrm{H}(\mathrm{C} 8-3)$	0.01884	$0 \cdot 31021$	$0 \cdot 67580$	$3 \cdot 3$ (5)
H (C9-1)	$0 \cdot 11702$	$0 \cdot 44911$	0.53312	$3 \cdot 0$ (4)
H(C9-2)	0.01177	$0 \cdot 50702$	0.60355	$2 \cdot 2$ (4)
H (C9-3)	$0 \cdot 16717$	0.58931	0.57967	$2 \cdot 5$ (4)
$\mathrm{H}(\mathrm{O} 10)$	$0 \cdot 23880$	$0 \cdot 44074$	$0 \cdot 74622$	3.8 (5)
H(O11)	$0 \cdot 43167$	0.10809	0.73087	$4 \cdot 3$ (5)

ferred to as II-cis. $\frac{1}{2} \mathrm{II}$-trans. The space group of the crystals is $P \overline{1}$ with $a=8 \cdot 377(2), \quad b=13 \cdot 335(2), c=$ $6.436(1) \AA, \alpha=102 \cdot 06(2), \quad \beta=74 \cdot 69(2), \gamma=102 \cdot 59(2)^{\circ}$. The unit cell contains two II-cis molecules related by an inversion centre and a third molecule at ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$). The latter molecule appeared to be a superposition of

Table 4. II-cis. $\frac{1}{2} \mathrm{II}$-trans. Final coordinates of the carbon and oxygen atoms

	x	y	z
	x	y	
$\mathrm{O}(1)$	$0.51917(9)$	$0.29192(5)$	$0.84658(12)$
$\mathrm{C}(2)$	$0.73548(14)$	$0.20682(9)$	$0.8671(20)$
$\mathrm{C}(3)$	$0.65420(15)$	$0.19500(9)$	$0.50949(17)$
$\mathrm{C}(4)$	$0.58976(12)$	$0.19862(7)$	$0.75587(16)$
$\mathrm{C}(5)$	$0.46469(14)$	$0.09983(8)$	$0.79968(17)$
$\mathrm{C}(6)$	$0.32421(14)$	$0.08106(8)$	$0.95375(17)$
$\mathrm{C}(7)$	$0.23174(13)$	$0.15199(8)$	$1.14131(16)$
$\mathrm{C}(8)$	$0.15495(16)$	$0.09410(9)$	$1.33565(19)$
$\mathrm{C}(9)$	$0.09319(15)$	$0.18472(10)$	$1.06897(21)$
$\mathrm{O}(10)$	$0.34138(10)$	$0.24222(6)$	$1.21885(12)$
$\mathrm{C}(11)$	$0.44699(19)$	$0.51213(10)$	$0.59629(28)$
$\mathrm{C}(12)$	$0.28460(12)$	$0.44182(7)$	$0.68540(16)$
$\mathrm{C}(13)$	$0.14352(17)$	$0.45255(11)$	$0.58757(20)$
$\mathrm{C}(14)$	$0.23801(16)$	$0.46964(9)$	$0.93233(18)$
$\mathrm{O}(15)$	$0.30624(10)$	$0.33472(6)$	$0.63937(11)$

a large percentage of II-trans molecules and a small percentage of the analogous molecules with a single $\mathrm{C}-\mathrm{C}$ bond. Out of the 8453 observed reflexions with $I>0,6395$ reflexions were selected for the later stages of the least-squares refinement. The criteria used were $\left|F_{o}\right|>3 w^{-1 / 2}$ and $\left|F_{c}\right|>0 \cdot 5, w$ being calculated from $w=\left[w_{c}^{-1}+0 \cdot 0004\left|F_{o}\right|^{2}\right]^{-1}$. The final parameters are listed in Tables 4 to $6 . R$ and R_{w} are both 0.074.*
The effect of the disorder in II-cis. $\frac{1}{2} \mathrm{II}$-trans on the atomic coordinates has been examined critically. By varying the proposed disorder around ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$) so that the difference map remains flat, it could be shown that the coordinates of the II-cis molecules are not affected by the assumptions made for the structure around $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. These coordinates are therefore be-

[^0]

Fig. 1. II-trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$. Projection of the structure along [010] onto the plane (010). The molecules shown by thin lines are related to those shown by thick lines by the b glide plane. $\mathrm{O}-\mathrm{H}$ bonds are indicated, $\mathrm{C}-\mathrm{H}$ bonds are not given.
lieved to have good accuracy, in contradistinction to those of the 'II-trans molecules' around ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$) for which the accuracy is low. It is interesting to note that the hydrogen-bonding system in the crystal described below is not affected by the disorder, as the geometry of the superimposed molecules is such that the OH groups of the two molecules coincide. We believe, however, that a very accurate study of II-cis. $\frac{1}{2} \mathrm{II}$-trans crystals will be hampered by the disorder. Crystals of

Fig. 2. II-cis. $\frac{1}{2} \mathrm{II}-$ trans. Projection of the structure along [001] onto the plane (001). The heights of the molecules decrease from II-cis lower part unit cell via 'II-trans' at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ to II-cis upper part unit cell.

Table 6. II-cis. $\frac{1}{2} \mathrm{II}-$ trans. Final coordinates and parameters B of the hydrogen atoms

	x	y	z	B
H(O1)	0.44528	0.30402	0.76449	$5.5(5)$
H(CC2-1)	0.68912	0.21218	1.03829	$2.7(4)$
H(C2-2)	0.79381	0.13841	0.80506	$2.7(3)$
H(C2-3)	0.83003	0.27439	0.82997	$3.2(4)$
H(C3-1)	0.55123	0.18920	0.43358	$2.5(3)$
H(C3-2)	0.71931	0.13023	0.43568	$2.8(4)$
H(C3-3)	0.74127	0.26539	0.47467	$3.0(4)$
H(C5)	0.50545	0.03441	0.68586	$2.9(4)$
H(C6)	0.26376	0.00132	0.94262	$2.2(3)$
H(C8-1)	0.06863	0.02452	1.29265	$1.9(3)$
H(C8-2)	0.25196	0.06895	1.38409	$2.9(4)$
H(C8-3)	0.09107	0.14491	1.47059	$3.0(4)$
H(C9-1)	0.00594	0.11768	1.01654	$2.8(4)$
H(C9-2)	0.02422	0.32455	1.20055	$3.0(4)$
H(C9-3)	0.14300	0.22492	0.93007	$3.2(4)$
H(O10)	0.40874	0.27310	1.09306	$4.6(5)$
H(C11)	$0.4371(22)$	$0.5882(14)$	$0.6314(29)$	$3.2(4)$
H(C13-1)	0.12073	0.53172	0.62452	$4.7(5)$
H(C13-2)	0.17070	0.42473	0.41402	$3.0(4)$
H(C13-3)	0.02506	0.40739	0.65739	$3.1(4)$
H(C14-1)	0.12002	0.42214	0.99565	$3.5(4)$
H(C14-2)	0.33269	0.45249	0.99912	$3.4(4)$
H(C14-3)	0.22458	0.55051	0.98015	$3.0(4)$
H(O15)	0.31687	0.30762	0.48525	$2.9(4)$

* Because of the disorder of the 'II-trans molecule' in II-cis. $\frac{1}{2} \mathrm{II}-$ trans the coordinates of $\mathbf{H (C 1 1)}$ were not fixed during the refinement.

II-trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ will therefore be used for the further accurate study of the double bond.

Description and discussion of the structures

The packing in the crystals of II -trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$

The [010] projection of the structure is given in Fig. 1. The molecules are arranged in layers perpendicular to z. One layer consisting of II-trans and water molecules connected by hydrogen bonds is shown in Fig. 1. Successive layers in the z direction are obtained from the layer shown in Fig. 1 by the operation of the c glide plane. The layers are held together by van der Waals interactions only; no short intermolecular distances are present.

Table 5. II-cis. $\frac{1}{2} \mathrm{II}$-trans. Parameters $U_{i j}$
Values are $\times 10^{4}$.

	U_{11}	U_{22}	U_{33}	$2 U_{12}$	$2 U_{23}$	$2 U_{13}$
	$192(3)$	$135(3)$	$150(3)$	$80(5)$	$24(4)$	$-84(5)$
$\mathrm{O}(1)$	$207(5)$	$239(5)$	$284(5)$	$94(8)$	$80(8)$	$-194(8)$
$\mathrm{C}(2)$	$266(5)$	$240(5)$	$154(4)$	$137(8)$	$55(7)$	$26(7)$
$\mathrm{C}(3)$	$160(4)$	$146(4)$	$151(4)$	$81(6)$	$29(6)$	$-39(6)$
$\mathrm{C}(4)$	$222(4)$	$141(4)$	$178(4)$	$57(6)$	$-12(6)$	$-35(7)$
$\mathrm{C}(5)$	$223(4)$	$136(4)$	$185(4)$	$-13(6)$	$6(6)$	$-54(7)$
$\mathrm{C}(6)$	$182(4)$	$144(4)$	$146(4)$	$-25(6)$	$27(6)$	$-54(6)$
$\mathrm{C}(7)$	$305(6)$	$213(5)$	$195(5)$	$-28(8)$	$135(7)$	$-10(8)$
$\mathrm{C}(8)$	$188(5)$	$275(5)$	$302(5)$	$39(8)$	$162(9)$	$-115(8)$
$\mathrm{C}(9)$	$232(3)$	$162(3)$	$127(3)$	$-58(5)$	$-11(4)$	$-80(5)$
$\mathrm{O}(10)$	$364(7)$	$155(5)$	$564(9)$	$-90(9)$	$-113(10)$	$538(13)$
$\mathrm{C}(11)$	$154(4)$	$135(4)$	$169(4)$	$55(6)$	$30(6)$	$-16(6)$
$\mathrm{C}(12)$	$318(6)$	$326(6)$	$248(5)$	$310(10)$	$88(9)$	$-166(9)$
$\mathrm{C}(13)$	$306(6)$	$232(5)$	$177(4)$	$180(8)$	$-83(7)$	$-93(8)$
$\mathrm{C}(14)$	$229(3)$	$138(3)$	$9132(3)$	$96(5)$	$6(4)$	$-98(5)$

The hydrogen bonding within a layer can be described as follows. The molecules A and B related by the twofold axis $\left[\frac{1}{2}, y, \frac{3}{4}\right]$ are directly linked by two equivalent hydrogen bonds of type $\mathrm{O}(10)-\mathrm{H}(10) \cdots \mathrm{O}\left(1^{\prime}\right)$ and indirectly via the water molecule by hydrogen bonds of type $\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(11) \cdots \mathrm{H}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$. The water molecule also serves to connect the unit $A-B$ via bonds of the type $\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(11)-\mathrm{H}(11) \cdots$ $\mathrm{O}\left(10^{*}\right)$ with molecules shifted half a unit cell in the y direction by the b glide plane. Finally the water mol-
ecules take part in the extension of the hydrogenbonding network along the x direction, molecule B being connected with $A(x+1, y, z)$ via the water molecule at the twofold axis $\left[1, y, \frac{3}{4}\right]$ with a bond of type $\mathrm{O}\left(10^{*}\right) \cdots \mathrm{H}(11)-\mathrm{O}(11)-\mathrm{H}^{\prime}(11) \cdots \mathrm{O}\left(10^{\prime \prime}\right)$.

The packing in the crystals of II-cis. $\frac{1}{2} \mathrm{II}$-trans
Fig. 2 shows the structure of II-cis. $\frac{1}{2} \mathrm{II}$-trans in [001] projection. The structure contains spirals of hydrogen bonds along the z direction. The projection of one spi-

Table 7. Distances (\AA) and angles $\left({ }^{\circ}\right)$ for the hydrogen bonds in II -trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ (upper three lines) and in II-cis. $\frac{1}{2} \mathrm{II}$-trans (lower three lines)

For bonds in which the water molecule takes part either $\mathrm{C}(a)$ reads $\mathrm{H}(a)$ or $\mathrm{C}(f)$ reads $\mathrm{H}(f), A=$ angle between $b-d$ and plane def, $B=$ distance of b from plane def.

$\mathrm{O}(b)$	$\mathrm{O}(\mathrm{d})$	$b-d$	$c-d$	$b-c-d$	$a-b-c$	$a-b-d$	$e-d-f$	$b-d-e$	$b-d-f$	A	B
O(11)	$\mathrm{O}(10)$	2.747 §	1.799 £	172.0°	$103.4{ }^{\circ}$	$100 \cdot{ }^{\circ}$	108.9°	115.9°	125.8°	27.9°	$1.284 \AA$
$\mathrm{O}(10)$	$\mathrm{O}(1)$	2.786	1.818	175.0	108.9	108.7	$109 \cdot 1$	$113 \cdot 8$	$121 \cdot 2$	$37 \cdot 2$	1.683
O(1)	$\mathrm{O}(11)$	2.819	1.855	$172 \cdot 5$	$109 \cdot 1$	$112 \cdot 3$	$103 \cdot 4$	$132 \cdot 4$	$100 \cdot 3$	$40 \cdot 8$	1.843
$\mathrm{O}(15)$	$\mathrm{O}(10)$	$2 \cdot 697$	1.735	171.4	$110 \cdot 8$	116.3	$107 \cdot 5$	125.9	$124 \cdot 8$	12.0	0.560
$\mathrm{O}(1)$	$\mathrm{O}(15)$	2.702	1.736	$174 \cdot 4$	$113 \cdot 8$	116.8	$110 \cdot 8$	118.7	114.4	$37 \cdot 9$	$1 \cdot 661$
$\mathrm{O}(10)$	O (1)	$2 \cdot 597$	1.651	164.2	$107 \cdot 5$	99.2	$113 \cdot 3$	$109 \cdot 1$	99.7	62.6*	$2 \cdot 305$

* $A=0^{\circ}$ if $b-d$ bisects the angle between the lone pairs, $A \simeq 55^{\circ}$ (half the tetrahedral angle) if $b-d$ coincides with one of the lone paits. The value 62.6° shows that $b-d$ lies outside the lone-pair region for the bond considered (the intramolecular bond in IIcis. $\frac{1}{2} \mathrm{II}-$ trans $)$.

Table 8. Bond lengths (\AA) in the II-trans and II-cis molecules
The standard deviations are $0.002 \AA$, except for 'II-trans' in II-cis. $\frac{1}{2} \mathrm{II}$-trans where the accuracy is lower due to the disorder.

Bond type		II-trans	II-cis	Lit.	'II-trans'§	
$\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$	$\mathrm{C}(2)-\mathrm{C}(4)$	1.525	1.530		$\mathrm{C}(13)-\mathrm{C}(12)$	1.522
	$\mathrm{C}(3)-\mathrm{C}(4)$	1.522	1.528		$\mathrm{C}(14)-\mathrm{C}(12)$	1.518
	$\mathrm{C}(8)-\mathrm{C}(7)$	1.529	1.529			
	$\mathrm{C}(9)-\mathrm{C}(7)$	1.528	1.531			
Average value		1.526	1.530	1-528*		
$\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{2}\right)$	$\mathrm{C}(4)-\mathrm{C}(5)$	1.513	1.520		$\mathrm{C}(12)-\mathrm{C}(11)$	$1 \cdot 522$
	$\mathrm{C}(7)-\mathrm{C}(6)$	1.514	$1 \cdot 517$			
Average value		1.513	1.518	$1.511 \dagger$		
$\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)$	C(5)--C(6)	1.326	1.338	$1.333 \ddagger$	$\begin{aligned} & \mathrm{C}\left(11^{\prime}\right)-\mathrm{C}(11) \\ & \mathrm{O}(15)-\mathrm{C}(12) \end{aligned}$	$\begin{aligned} & 1.344 \\ & 1.438 \end{aligned}$
	$\mathrm{O}(1)-\mathrm{C}(4)$	1.452	$1 \cdot 440$			
	$\mathrm{O}(10)-\mathrm{C}(7)$	1.436	1.432			
* Davis \& Hassel (1963). \dagger Weighted average of 14 accurately determined bond lengths from Acta Cryst. (1971). B27. \ddagger Bartell \& Bonham (1959). § Numbering scheme for 'heavy' atoms:						

(a) Molecules on general positions:

(b) Molecule at inversion centre in II-cis. $\frac{1}{2} \mathrm{II}$-trans:

ral is shown in the lower part of the unit cell. The spiral uses both OH groups of the II-cis molecule in the lower part of the unit cell and one OH group of 'II-trans' at ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$) in the sequence:
$\mathrm{O}(10 ; z-1) \cdots \mathrm{H}-\mathrm{O}(15) \cdots \mathrm{H}-\mathrm{O}(1) \cdots \mathrm{H}-\mathrm{O}(10 ; z)$ etc.
The remaining OH group of II-trans at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ takes part in the centrosymmetrically related spiral shown in the upper part of the unit cell. In this way chains of type

trans
1.1
cis cis
1 /
trans
$1 /$
cis cis
1 /
trans
$1 /$

Fig. 3. Difference syntheses for the II-trans and II-cis molecules. The double bond $C(5)=C(6)$ is perpendicular to the drawing, its centre coinciding with + . The vertical direction corresponds to the normal to the plane $C(4) C(5) C(6) C(7)$. Contours are drawn at intervals of $0 \cdot 1 \mathrm{e} \AA^{-3}$, the zero line is dashed. $\sigma=0.06 \mathrm{e}^{-3}$.
are formed in the z direction. The three molecules in Fig. 2 belong to the same chain. Successive chains in the x and y directions are linked by van der Waals interaction only: no short intermolecular distances are observed.

Geometry of the hydrogen bonds

Atomic distances and angles which are of interest for the characterization of the hydrogen bonds are given in Table 7. We see that the intramolecular hydrogen bond $\mathrm{O}(10)-\mathrm{H} \cdots \mathrm{O}(1)$ in the II-cis molecules of Fig. 2 is relatively short and has the largest deviation from linearity. The intermolecular hydrogen bonds in IIcis. $\frac{1}{2}$ II-trans are shorter than those in II-trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$. No explanation for this phenomenon has been found from the geometry of the bonds. It seems that the lengths of hydrogen bonds do not only depend on their immediate surroundings but are also influenced by the crystal packing as a whole. For the bonds using the water molecules in II-trans $. \frac{1}{2} \mathrm{H}_{2} \mathrm{O}, \mathrm{O}(1)-\mathrm{H} \cdots \mathrm{O}(11)$ with the water molecule as H -acceptor is longer than $\mathrm{O}(11)-\mathrm{H} \cdots \mathrm{O}(19)$ with the water molecule as H -donor. In this case the geometry of the bonds may play a part. It can be deduced from the differences between $b-d-e$ and $b-d-f$ in Table 7 that for $\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{O}(11)$, which is the longest hydrogen bond in II-trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$, the location of the line $\mathrm{O} \cdots \mathrm{O}$ relative to the lone pairs of $\mathrm{O}(d)$ is less favourable than for the remaining bonds in II-trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$.

The individual molecules

Analysis of the thermal parameters according to Pawley (1963) has shown that the molecules do not behave as rigid bodies. No corrections for libration have therefore been applied to the bond lengths and angles given in Tables 8 and 9. The values given for the 'II-trans molecules' in II-cis. $\frac{1}{2}$ II-trans will not be discussed

Table 9. Valence angles (${ }^{\circ}$) in the II-trans and II-cis molecules Standard deviations are 0.2°, except for 'II-trans' in II-cis. $\frac{1}{2} \mathrm{II}$-trans where the accuracy is lower.

	II-trans	II-cis	'II-trans'	
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(2)$	$105 \cdot 5$	$106 \cdot 1$	$\mathrm{O}(15)-\mathrm{C}(12)-\mathrm{C}(14)$	$106 \cdot 0$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$108 \cdot 8$	$108 \cdot 8$	$\mathrm{O}(15)-\mathrm{C}(12)-\mathrm{C}(13)$	$109 \cdot 3$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$107 \cdot 5$	$113 \cdot 1$	$\mathrm{O}(15)-\mathrm{C}(12)-\mathrm{C}(11)$	$111 \cdot 0$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$110 \cdot 9$	$110 \cdot 4$	$\mathrm{C}(14)-\mathrm{C}(12)-\mathrm{C}(13)$	$110 \cdot 5$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$109 \cdot 7$	$109 \cdot 3$	$\mathrm{C}(14)-\mathrm{C}(12)-\mathrm{C}(11)$	$109 \cdot 2$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$114 \cdot 0$	$109 \cdot 1$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$110 \cdot 7$
$\mathrm{O}(10)-\mathrm{C}(7)-\mathrm{C}(9)$	$105 \cdot 9$	$110 \cdot 0$		
$\mathrm{O}(10)-\mathrm{C}(7)-\mathrm{C}(8)$	$109 \cdot 3$	$105 \cdot 6$		
$\mathrm{O}(10)-\mathrm{C}(7)-\mathrm{C}(6)$	$110 \cdot 8$	$112 \cdot 5$		$124 \cdot 4$
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$	$110 \cdot 7$	$110 \cdot 0$	$\left.\mathrm{C}(11)^{\prime}\right)-\mathrm{C}(11)-\mathrm{C}(12)$	$112 \cdot 8$
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(6)$	$109 \cdot 9$	$109 \cdot 4$	$\left.\mathrm{C}(11)^{\prime}\right)-\mathrm{C}(11)-\mathrm{H}(\mathrm{C} 11)$	$112 \cdot 9$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$110 \cdot 2$	$109 \cdot 3$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(\mathrm{Cl1)}$	
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$127 \cdot 4$	$132 \cdot 5$		
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(\mathrm{C} 5)$	$120 \cdot 8$	$117 \cdot 3$		
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(\mathrm{C} 5)$	$111 \cdot 7$	$110 \cdot 2$		
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$124 \cdot 9$	$132 \cdot 1$		
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(\mathrm{C} 6)$	$121 \cdot 8$	$114 \cdot 6$		

further as the coordinates of this molecule are not very accurate due to the disorder discussed above.

Table 8 shows that chemically equivalent $\mathrm{C}-\mathrm{C}$ bonds within each of the molecules are equal within experimental error. As expected $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{2}\right)$ bonds are shorter than $\mathrm{C}\left(s s^{3}\right)-\mathrm{C}\left(s p^{3}\right)$ bonds. The $\mathrm{C}-\mathrm{C}$ bonds in II-cis tend to be longer than corresponding bonds in II-trans. We ascribe this elongation to repulsion. No explanation has been found for the variation in $\mathrm{C}-\mathrm{OH}$ bond lengths.
As observed in various other compounds, e.g. in 4,5-di-t-butylimidazole and 2,3-di-t-butylquinoxaline (Visser \& Vos, 1971a, b), the variations in the O-C-C and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles are large compared with their standard deviations (Table 9). Repulsion causes the angles $\mathrm{C}=\mathrm{C}-\mathrm{C}$ in the II-cis molecule (132.5 and 132.1°) to be considerably larger than those in the II-trans molecule (127.4 and $124 \cdot 9^{\circ}$), whereas the angles $\mathrm{C}=\mathrm{C}-\mathrm{C}$ in II-trans are still larger than the angle $\mathrm{C}=\mathrm{C}-\mathrm{C}$ of 123° in trans-2-butene (Sutton, 1965, MI12). The difference between the angles $\mathrm{C}=\mathrm{C}-\mathrm{C}$ in II-trans can also be ascribed to repulsion, as can be seen from the values of the short non-bonded distances $\mathrm{C}(3) \cdots \mathrm{C}(6)=2 \cdot 95$ \AA, i.e. $0 \cdot 45 \AA$ shorter than the $\mathrm{C} \cdots \mathrm{C}$ van der Waals distance of $3 \cdot 4 \AA$, and $\mathrm{O}(10) \cdots \mathrm{C}(5)=2 \cdot 78 \AA$, i.e. $0 \cdot 32$ \AA smaller than the $\mathrm{O} \cdots \mathrm{C}$ van der Waals distance of $3 \cdot 1 \AA$. Consideration of the molecular skeleton at the bottom of Table 8 shows that the increase in repulsion when going from $\mathrm{O}(10) \cdots \mathrm{C}(5)$ to $\mathrm{C}(3) \cdots \mathrm{C}(6)$ causes the angle $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)=127 \cdot 4^{\circ}$ to be larger than the angle $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)=124 \cdot 9^{\circ}$.

Although the structure determination is not extremely accurate as yet, it is worth studying the electron density distributions perpendicular to the double bonds of the two molecules. Therefore difference densities were calculated for sections perpendicular to these bonds. The F_{c} values were based on the final parameters of the structure refinement (reflexions up to $2 \sin \theta / \lambda=1.92 \AA^{-1}$). Only reflexions up to $2 \sin \theta / \lambda=$ $1 \cdot 20 \AA^{-1}$ were included in the difference map as it was expected that for reflexions with higher $2 \sin \theta / \lambda$ values the random errors would obscure the systematic contribution to the difference density. The difference maps
are shown in Fig. 3. As expected we see that the peaks showing the presence of bonding electrons in the double bonds are elongated along the normal to the plane through the double bond and its adjacent atoms. The height of the maxima are 0.44 and $0.39(6)$ e \AA^{-3} for II-trans and II-cis respectively. This is about a factor of two lower than the values which we have obtained from theoretical calculations for $\mathrm{C}-\mathrm{C}$ bonds in molecules subject to thermal vibrations (Ruysink \& Vos, 1974a). The reduction of the height of the maxima has been discussed in another paper (Ruysink \& Vos, 1974b). Moreover in the future more accurate intensity measurements will be made, preferably at He temperatures, to obtain more detailed information on the electron density distribution in the double bond. For this work crystals of II-trans. $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ will be used.

Thanks are due to Drs G. Kemper for work on the structure of II-cis. $\frac{1}{2} \mathrm{II}$-trans, and to Professor E.H. Wiebenga for reading the manuscript. Part of the research has been supported by the Dutch Organization for the Advancement of Pure Research (ZWO). The computations were done at the Computing Centre of the University of Groningen.

References

Bartell, L. S. \& Bonham, R. A. (1959). J. Chem. Phys. 31, 400-404.
Davis, M. \& Hassel, O. (1963). Acta Chem. Scand. 17, 1181.

Helmholdt, R. B., Ruysink, A. F. J., Reynaers, H. \& Kemper, G. (1972). Acta Cryst. B28, 318-319.
Pawley, G. S. (1963). Acta Cryst. 16, 1204-1208.
Ruysink, A. F. J. \& Vos, A. (1974a). Acta Cryst. A 30, 497-502.
Ruysink, A. F. J. \& Vos, A. (1974b). Acta Cryst. A30, 503-506.
Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement 19561959. London: The Chemical Society.

Visser, G. J. \& Vos, A. (1971a). Acta Cryst. B27, 17931801.

Visser, G. J. \& Vos, A. (1971b). Acta Cryst. B27, 18021811.

[^0]: * Tables of structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30439 (46 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, England.

